Passive A-Band Wind Sounder (PAWS) For Measuring Tropospheric Wind Velocity

Shane Roark, Robert Pierce, Paul Kaptchen Philip A. Slaymaker, Pei Huang, Chris Grund

Earth Science Technology Conference

- Instrument Incubator Program (2004)
- Objectives
 - Demonstrate an instrument concept for passive measurement of tropospheric wind speed using Doppler shifts in oxygen absorption features

Motivation

- Improve global coverage of wind measurements
- Improve weather forecasting
 - "number one unmet measurement objective for improving weather forecasts" NRC Decadal Survey

	WINDII	HRDI	PAWS
Vertical Coverage	80 – 300 km	10 – 115 km	0 – 20 km
Vertical Interval	2 km	2.5 km	1 km
Horiz. Cell Size	140 km	500 km	250 km
Spectral Signal	Emission	Absorption	Absorption
Target Species	O and OH	O_2 B and γ Bands	O ₂ A-Band
Spectrometer	Imaging Michelson, fixed FOV	Triple Fabry-Perot	Imaging Michelson, fixed FOV
Meas. Approach	Large OPD, scan across one period	Gimbal telescope Angle/gap scan	Large OPD, fixed tilted mirror
Accuracy	~ 5 m/s	~ 3 to 12 m/s	~ 5 m/s (TBD)

Upper Atmosphere Research Satellite

- ❖Wind Imaging Interferometer (WINDII) Sep 1991 to Dec 2005
- ❖ High-Resolution Doppler Imager (HRDI) Sep 1991 to ~2000

PAWS Instrument Approach

Simple components with flight heritage

Limitations of the Technique

- Daytime-only measurements
- Will not provide the accuracy, precision, or spatial resolution anticipated for Doppler lidar

Potential Advantages of the Technique

- Simple components with proven space heritage
- Low cost, risk, and platform requirements, and insensitive to spacecraft altitude
- Much better wind data than is currently available

Measurement Approach

Oxygen A-Band Transmission & Line Selection

- Lines are in a clear region of the atmospheric absorption spectrum
- Lines are extremely sharp and well resolved
- Wide range of line strength is available to optimize SNR
- Oxygen is an excellent tracer molecule for the troposphere
- A-band wavelength region is compatible with technology for high spectral resolution

Measurement Approach

Detecting Doppler Shift with a Michelson Interferometer

Years 1 and 2: PAWS Breadboard and Analysis

Path-finding tool – sacrifices stability for versatility

Years 1 and 2: Lessons Learned

- Breadboard very sensitive
 - Need to improve stability by 100x
 - Wind speed error ± 20 m/sec
- Require extremely rigid construction
- Combining air-spaced etalon and Michelson reduces sensitivity to pressure and temperature
- Temperature and pressure stability
 - 0.07 K and 0.7 Torr = 0.5 m/sec EDS
- Spatially homogeneous light sources
- Using an absorption doublet doubles the SNR
- The shot noise limited wind speed detection is about 0.1 m/sec
- Optical path difference of 1.5 cm with one etalon (baseline)
- Demo and calibration requires wind tunnel and deep absorption

Engineering Unit Diagram

- Modular, Fiber-Coupled Design
- Three Vertical Elements in FOV

Emphasizes Stability

Engineering Unit Filtering Approach

Pre-Filter (0.22 nm FWHM)

- Stability is critical
 - Fixed-spacing ideal for flight, but too expensive for IIP to achieve nm spacing tolerance
- Tuning is required for EU
 - Angle tuning is not desirable due to field dependence of filter function
 - Pressure tuning is complicated and less compatible with space platform
 - PZT tuning allows normal incidence and high sensitivity

- Filter: Air-Spaced Etalon
 - Centered near 13100 cm⁻¹ (763.35 nm)
 - Modest finesse requirement

Engineering Unit Filter Section

- Modular Filter Section
 - Simplifies design; Improves versatility
- External aluminum housing (± 0.7K)
- Internal ceramic housing
 - Low CTE & thermal conductivity; stiff
- Etalon(s) bonded to ceramic (± 0.07K)

Etalon Tuning

- Maximize metrology signal on CCD
- CCD readout to PZT driver to tune etalon

Etalon Stabilization

Capacitance sensor to PZT to hold capacitance

Engineering Unit Interferometer Section

- External aluminum housing (± 0.7K)
- Internal ceramic housing
 - Low CTE & thermal conductivity; stiff
- Components bonded to ceramic housing
- Cube beam splitter and Zerodur mirror
- Hydroxide catalysis bonded to Zerodur base
- Temperature controlled to ± 0.07K

Engineering Unit Laboratory Testing

- Instrument sealed in pressure-stabilized chamber
- LED source provides artificial sunlight
- Telecom fiber optic switches provide differential wind measurement and metrology source injection

Wind Tunnel for Laboratory Testing

Summary and Conclusions

- PAWS targets the troposphere, so absorption lines are used rather than emission
 - Narrow absorption lines buried in a relatively broad background signal
 - Complicates the sensitivity of the measurement
 - Imposes tough requirements on system stability
- Engineering unit approach
 - Air-spaced etalon and Michelson interferometer
 - Fiber coupled, modular design
 - Rigid, low thermal expansion housing
 - Measure two absorption lines: doubles SNR
 - Minimize temperature and pressure fluctuations
 - Engineering unit will be capable of measuring wind at 5 m/s with the wind tunnel
- Path to Flight
 - Fixed-space etalons (is tuning required?)
 - Two or more filter modules of optimal performance over 20-km limb
 - A-band emission lamp for on-board calibration
 - Couple with A-band spectrometer for peak shape (pressure, cloud height)